APPENDIX A – SUPPLEMENTAL INFORMATION FOR SELECTION OF PRGS EAST WATERWAY OPERABLE UNIT FEASIBILITY STUDY

Prepared for

Port of Seattle

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

November 2017

APPENDIX A TABLE OF CONTENTS

Part 1	Compliance with Sediment Management Standards

Part 2 Development of Sediment PRGs for PCBs in Fish

PART 1: COMPLIANCE WITH SEDIMENT MANAGEMENT STANDARDS

TABLE OF CONTENTS

1—INTRO	DUCTION	<u>1</u> 2
2 SEDIM	ENT CLEANUP OBJECTIVES	<u>4</u> 2
3 CLEAN	TUP SCREENING LEVELS	<u>6</u> 2
4 ADJUS	TMENT OF CLEANUP LEVELS	<u>8</u> 2
4.1—Te	echnical Possibility	<u>9</u> 2
4.1.1	-Technical Possibility of Maximum Remediation Scenario	<u>9</u> 2
4.1.2	Maintenance in the Long Term	<u>13</u> 2
4.2 No	et Adverse Environmental Impact	<u>16</u> 2
4.3 Su	ummary and Conclusion	17 2
5 SEDIM	ENT RECOVERY ZONE	<u>19</u> 2
6—CONCI	USIONS	<u>21</u> 2
7 REFER	ENCES	<u>22</u> 2
1 INTRO	DUCTION	1
2 SEDIM	ENT CLEANUP OBJECTIVES	4
3 CLEAN	IUP SCREENING LEVELS	6
4 ADJUS	IMENT OF CLEANUP LEVELS.	7
5 CONCI	LUSIONS	21
List of Tal		
	Areas and Post-construction Concentrations for Maximum Possible	
Table 1		
m 11 o	Remediation Evaluation	
Table 2	Technical Possibility Lines of Evidence	
List of Fig	ures	
Figure 1	Areas and Offsets for Maximum Possible Remediation Evaluation	
Figure 2	Conceptual Cross Section Showing Maximum Possible Remediation f	for
	Terminal with Keyway	

Appendix A, Part 1 – Compliance with Sediment Management Standards	November 2017
East Waterway Operable Unit Feasibility Study ii	060003-01.101
• • •	

1 INTRODUCTION

The Feasibility Study (FS) for the East Waterway (EW) Operable Unit (OU) has been developed under the regulatory framework of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with CERCLA requirements, the selected alternative must substantively comply with applicable or relevant and appropriate requirements (ARARs), which include the Washington State Sediment Management Standards (SMS). The SMS are the Washington State standards for remediating sediments under the Model Toxics Control Act (MTCA). This appendix describes provides a brief description of the methods and procedures for establishing cleanup levels under the SMS, and also discusses how the selected EW alternative alternatives developed under CERCLA will comply with SMS requirements.

The preliminary remediation goals (PRGs) presented in Section 4 of the FS were developed to complyfollowing a process consistent with the SMS for determination of cleanup levels1 under Washington Administrative Code (WAC) 173-204-560. The SMS cleanup level determination is performed by determining the levels are based on risk-based threshold concentrations, background concentrations, or practical quantitation limits. Under SMS, cleanup levels are based on the lower sediment cleanup objectives (SCO; discussed in Section 2 of this appendix) and the upper cleanup screening levels (CSL; discussed in Section 3 of this appendix). The cleanup levels are initially set at the SCO. If the SCO is not technically possible to attain, or would result in net adverse environmental impacts, then the cleanup level can be adjusted up to the CSL. For several contaminants of concern (COCs) in the FS, the SCO has been established at natural background or practical quantitation levels (PQLs), but the CSL has not been established because regional background has not been determined for the EW area. In the absence of regional background values, cleanup levels (i.e., PRGs) for these GOCs are based on the SCO in the EW FS. For some of these GOCs, the SCO is not technically possible to achieve. may be adjusted up to the CSL. As described in Sections 2, 3, and 4, total polychlorinated biphenyls (PCBs) and dioxins/furans currently have cleanup

¹ The For purpose of this appendix only, the SMS term "cleanup level" is <u>considered</u> analogous to the CERCLA term "PRG" used in the main text of the FS. This appendix <u>sometimes</u> uses the term "cleanup level" for consistency with the SMS. <u>In other contexts</u>, these terms may not have the same meaning.

levels based on unattainable natural background or PQL concentrations, which may be difficult to achieve based on the best-estimate predictions of sediment concentrations in the FS (e.g., see FS Section 9). Under both CERCLA and SMS there are provisions to address the influence of site-specific factors including the consideration of new information.

Based on preliminary evaluations, the EW OU cleanup is expected to comply with MTCA/SMS for protectiveness of human health for direct contact (remedial action objective [RAO] 2), protection of the benthic community (RAO 3), and protection of higher trophic level organisms (RAO 4) by achieving the PRGs for these RAOs. Following source control and remediation efforts, surface sediments in the EW OU are not currently predicted to attain all natural background—or PQL—based PRGs for protection of human health for seafood consumption (RAO 1), due to modeling assumptions about the ongoing contribution of elevated concentrations from diffuse, nonpoint sources of contamination that contribute to regional background concentrations. However, achieving addressing compliance with the MTCA/SMS ARARs may occur in one of twothree ways:

- Post-remedy monitoring may demonstrate sediment concentrations lower than
 currently predicted, and PRGs identified in this FS may be attained for certain
 chemicals in a reasonable restoration timeframe. If necessary, the restoration
 timeframe needed to meet the PRGs could be extended beyond 10 years consistent
 with the substantive requirements of a Sediment Recovery Zone (SRZ) as defined by
 SMS (see Section 5 of this appendix)-if consistent with CERCLA.
- Sediment cleanup levels (SCLs) may be adjusted upward once if EPA-approved regional background levels are established for the geographic area of the EW (see Section 4 of this appendix). Considering that esuch regional background value hasvalues have not yet been determined for the EW, such adjustments could occur in the Record of Decision (ROD) (before remediation) or subsequently as part of a ROD amendment or Explanation of Significant Differences (ESD) (during or after remediation). Consistent with the bullet above, the restoration timeframe needed to meet the SCLs could be extended beyond 10 years if consistent with the substantive requirements of an SRZ as defined by SMSCERCLA.

²⁻Note that none of the alternatives is predicted to achieve the SCO for these chemicals; therefore, this appendix applies equally to any of the alternatives, if selected.

In addition, followingFollowing remediation and long-term monitoring, if the U.S. Environmental Protection Agency (EPA) determines that no additional practicable actions can be implemented under CERCLA to meet certain MTCA/SMS ARARs, EPA may issue a ROD Amendment or ESD providing the basis for a technical impracticability (TI) waiver for specified MTCA/SMS ARARs under Section 121(d)(4)(C) of CERCLA-, 42 U.S.C. § 9621(d)(4)(C).

Because it is not known whether, or to what extent, the SMS ARARs for total PCBs and dioxin/furans will be achieved in the long term, or the timing of a potential regional background evaluation, the SMS compliance mechanism is not selected a TI waiver is not justifiable at this time.

The rest of this appendix provides additional detail regarding establishing SCO (Section 2) and CSL (Section 3), upwardly adjusting cleanup levels (Section 4), and implementation of an SRZ (Section 5). Section 6 provides a summary of the methods to comply with the SMS ARAR.

Formatted: Bulleted + Level: 1 + Aligned at: 0.25" + Indent at: 0.5"

2 SEDIMENT CLEANUP OBJECTIVES

The SMS outline procedures for establishing the lower bound for cleanup levels, called the SCO. Multiple exposure pathways, background concentrations, and PQLs are all considered when determining the SCO, as follows:

WAC 173-204-560 (3) Sediment cleanup objectives. The sediment cleanup objective for a contaminant shall be established as the highest of the following levels:

- (a) The lowest of the following risk-based levels:
 - (i) The concentration of the contaminant based on protection of human health as specified in WAC 173-204-561(2);
 - (ii) The concentration or level of biological effects of the contaminant based on benthic toxicity as specified in WAC 173-204-562 or 173-204-563, as applicable;
 - (iii) The concentration or level of biological effects of the contaminant estimated to result in no adverse effects to higher trophic level species as specified in WAC 173-204-564; and
 - (iv) Requirements in other applicable laws;
- (b) Natural background; and
- (c) Practical quantitation limit.

As summarized in Tables 4-43 and 4-54 of the FS, RAOs were established to be under CERCLA for this FS are consistent with WAC regulations the SMS:

- Risk-based threshold concentrations (RBTCs) associated with RAOs 1 and 2 were established to bein a manner consistent with WAC 173-204-560(3)(a)(i)
- RBTCs associated with RAO 3 were established to bein a manner consistent with WAC 173-204-560(3)(a)(ii)
- RBTCs associated with RAO 4 were established to bein a manner consistent with WAC 173-204-560(3)(a)(iii)
- Natural background concentrations were established to be consistent with WAC 173-340-709
- PQLs were established to be consistent with WAC 173-204-505(14)

Based on WAG 173-204-560(3) and values from the Washington State Department of Ecology (Ecology) Sediment Cleanup User's Manual (SCUM) II (Ecology 2017), the SCO would be established based on natural background for total PCBs (3.5 micrograms per kilogram [µg/kg] dry weight [dw]) and the PQL for dioxins/furans (5 nanograms [ng] toxic equivalent [TEQ]/kg dw), because these are the highest of the three SCO levels for these compounds. The arsenic SCO is also established at natural background, but the Ecology-determined natural background concentration of 11 milligrams per kilogram (mg/kg) is achievable based on best estimate FS model results and, therefore, the establishment of a CSL value is not required. As discussed in Section 4 of the main body of the FS, EPA has prescribed other methods for determining natural background concentrations for establishing PRGs in compliance with CERCLA (e.g., see FS Table 4-2).

3 CLEANUP SCREENING LEVELS

The SMS outline similar procedures for establishing the upper bound for cleanup levels, called the CSL:

WAC 173-204-560 (4) Cleanup screening levels. The cleanup screening level for a contaminant shall be established as the highest of the following levels:

- (a) The lowest of the following risk-based levels:
 - (i) The concentration of the contaminant based on protection of human health as specified in WAC 173-204-561(3);
 - (ii) The concentration or level of biological effects of the contaminant based on benthic toxicity as specified in WAC 173-204-562 or 173-204-563, as applicable;
 - (iii) The concentration or level of biological effects of the contaminant estimated to result in no adverse effects to higher trophic level species as specified in WAC 173-204-564; and
 - (iv) Requirements in other applicable laws;
- (b) Regional background as defined in subsection (5) of this section; and
- (c) Practical quantitation limit.

RBTCs associated with the CSL (excess cancer risk of 10⁻⁵ or hazard quotient of 1) are presented in FS Table 3-13 and are well below the SCOs for total PCBs and dioxins/furans.

The SMS definedefines regional background as follows:

WAC 173-204-505(16)

Regional background means the concentration of a contaminant within a department-defined geographic area that is primarily attributable to diffuse nonpoint sources, such as atmospheric deposition or storm water, not attributable to a specific source or release. See WAC 173-204-560(5) for the procedures and requirements for establishing regional background.

The CSL for total PCBs and dioxins/furans may be based on However, because EPA-approved regional background concentrations, once established. However, have not been developed

for the East Waterway area, regional background was not considered in the development of the PRGs for the EW. In the absence of regional background concentrations, and because the risk-based levels are below the SCO, the CSL haswas not been established for total PCBs or dioxin/furans.

Ecology is currently developing an approach to collect additional information to establish regional background for the Lower Duwamish Waterway (LDW), and has not determined how this will be applied to the EW.

4 ADJUSTMENT OF CLEANUP LEVELS

Because regional background concentrations have not been determined for the EW and the upper bound for the cleanup level (the CSL) has not been determined, the cleanup levels in the FS are set at the SCO for total PCBs and dioxins/furans. However, if regional background concentrations are established, then, following the SMS, the cleanup levels will For the EW, the FS has established cleanup levels consistent with the SCOs for each of the COCs. Cleanup levels were based on either RBTCs (cPAHs) or natural background (PCBs, dioxins/furans, and arsenic). For those cleanup levels based on natural background there is the potential for post-remedial concentrations to remain above the cleanup level due to regional influences. As with CERCLA risk-based determinations, the SMS provides for situations when the SCO-based cleanup levels cannot be met. The following sections discuss the site-specific factors that could be considered to justify the adjustment of the cleanup levels from the SCO to the CSL.

<u>As indicated in Section 9 of the FS, a cleanup level may</u> be adjusted upward based on the following site-specific factors:

WAC 173-204-560(2)(a)

- (ii) Upward adjustments. The sediment cleanup level may be adjusted upward from the sediment cleanup objective based on the following site-specific factors:
 - (A) Whether it is technically possible to achieve the sediment cleanup level at the applicable point of compliance within the site or sediment cleanup unit; and (B) Whether meeting the sediment cleanup level will have a net adverse environmental impact on the aquatic environment, taking into account the short- and long-term positive effects on natural resources, habitat restoration, and habitat enhancement and the short- and long-term adverse impacts on natural resources and habitat caused by cleanup actions

The following sections discuss the site specific factors considered to adjust the cleanup levels from the SCO.

4.1 Technical Possibility

The technical possibility is defined in SMS as follows:

WAC 173 204 505(23)

"Technically possible" means capable of being designed, constructed and implemented in a reliable and effective manner, regardless of cost.

Ecology guidance, provided in the SCUM II (Ecology 2017), further clarifies WAC 173–204-560(2)(a)(ii)(A) that adjustment of the cleanup level upward should be based on "whether it is technically possible to achieve <u>and maintain</u> the cleanup level at the applicable point of compliance." [emphasis added]

This section first estimates the lowest technically possible concentrations that could be achieved in the EW immediately following construction for a hypothetical maximum remediation scenario. It also evaluates what is technically possible to maintain in the long term following construction. The combination of these two evaluations is used to evaluate technical possibility. This analysis is developed for FS purposes only; technical possibility will be determined based on empirical long term monitoring data for the selected alternative to comply with SMS.

4.1.1 Technical Possibility of Maximum Remediation Scenario

The EW is a highly urbanized, commercial waterway with actively used marine transportation infrastructure along most of the shoreline area that limit the remedial activities that can occur. For example, full removal of all contaminated sediment near structures is not possible because full removal would affect structural stability. As a result, some amount of undisturbed contaminated sediment will remain in surface sediments near structures following remediation.

This section describes a design level analysis on a hypothetical site wide dredging scenario to estimate the lowest concentration that would be technically possible to achieve for total PCBs at the completion of construction. The scenario was developed assuming that all engineered infrastructure such as piers, engineered embankments, keyways, bridges, and the communication cable crossing would remain in place. Removing and reconstructing the

infrastructure associated with the EW would require massive modifications (e.g., reconstructing the West Scattle Bridge, temporarily closing important Coast Guard and Port of Scattle terminals, etc.) that would result in excessive disturbance to essential public and private infrastructure. Moreover, this scenario assumed that remediation would be performed by dredging everywhere possible and included residuals management re-dredging passes where practicable to further lower concentrations. Dredging was assumed to be followed by residuals management cover (RMC) in most locations, and was assumed to be followed by in situ treatment with activated carbon in underpier and keyway areas where RMG material could not be placed due to stability concerns and navigation depth requirements. Note that this hypothetical scenario was developed for this analysis only and does not represent an alternative in the FS. Also note that this analysis estimates concentrations at a single point in time (immediately after construction)—ignoring ongoing mixing, propwash, and incoming sedimentation—and is therefore biased low compared to what can be achieved in the long term (Section 4.1.2).

To support this analysis, the EW was divided into six areas based on the physical constraints of each (Table 1, Figure 1), and spatially weighted average concentrations (SWACs) immediately following construction were calculated for each as summarized in the following paragraphs.

Area 1

The first area consists of most of the open-water areas of the waterway (114 acres), and has the fewest structural limitations affecting remediation. In these areas, the assumed remediation scenario was dredging the waterway to the deepest extent of contaminated sediment, followed by two residuals management re-dredging passes (average of 2 feet removal for each), followed by RMC placement. The resulting concentration immediately following construction in surface sediment (top 10 centimeters [cm]) was estimated to be 10 µg/kg dw for total PGBs for this area, based on the dredging residuals calculation methodology presented in FS Appendix B, Part 3A.

Area 2

The second area includes 15 acres of underpier sediments that have limited access and are present on top of slopes comprised of large riprap (see Figure 2). Remediation in these areas

is challenging due to access limitations and the presence of hard riprap surfaces and rock interstices. These areas were assumed to be dredged by diver assisted hydraulic dredging, followed by a thin placement of in situ treatment material to reduce bioavailability of the remaining sediment. The resulting post construction concentration was estimated to be 290 µg/kg dw for total PCBs. This assumed that an average of 10 cm (3.9 inches) of sediments would remain in place following remediation due to the difficulty of full removal on riprap slopes and within rock interstices, followed by the mixing of 7.6 cm (3 inches) of in situ treatment material (see residuals calculations presented in FS Appendix B, Part 3A). In situ treatment material was also assumed to reduce the bioavailability of hydrophobic organic compounds such as PCBs by 70%, resulting in an estimated effective bioavailable underpier average concentration estimated on a dry-weight basis of 153 µg/kg3. Note that in situ treatment is a less proven technology than the others presented in this evaluation and, therefore, in situ treatment is used only in areas where other, more proven technologies are not feasible or unlikely to be effective, such as under the piers (see Section 7.2.7.1 and 7.8 of the FS). Reduction in bioavailability is approximated from available evidence from benchscale studies and field demonstrations, and is subject to uncertainty.

Area 3

The third area includes 7 acres of keyways that are at the base of the underpier slopes (see Figures 1 and 2). These are rock structures keyed into the toe of the riprap slopes to maintain the stability of the slopes above. The tops of the keyways are situated at the navigation depth of approximately—51 feet mean lower low water, therefore limiting the amount of removal and the amount of clean fill placement that can be performed in these areas. Similar to the underpier areas, these areas were assumed to be dredged to the maximum extent possible without removing riprap, followed by a thin placement of in situ treatment material to reduce bioavailability. For this analysis, dredging was assumed to be performed by standard mechanical means. The resulting post-construction concentration was estimated to be 364 µg/kg dw for total PCBs based on an average of 10 cm (3.9 inches) of sediment remaining following dredging, with a 7.6 cm (3 inch) layer of clean in situ treatment material being placed following dredging. The effective bioavailable average concentration in keyways

³-Note the dry-weight concentration is intended to estimate bioavailability reduction to support calculation of a site-wide SWAC that considers the benefits of the application of in situ treatment material, but this concentration is not what would be measured on a dry-weight basis following construction.

(using a 70% reduction in dry weight concentrations) was estimated to be 192 μ g/kg. Note that the placement of in situ treatment material in keyways presented for this evaluation is hypothetical to support this evaluation; however, some keyway areas are already at the required navigation elevation and placement would not be possible in some areas due to navigation requirements. In addition, long-term effectiveness and stability of placement near active berthing areas is highly uncertain because of propeller wash (propwash), but was assumed to be stable for the purpose of this analysis.

Area 4

The fourth area includes 18 acres of structural slope and offset areas where dredge depths will be limited by the geotechnical stability of adjacent slopes (see Figures 1 and 2). In these areas, some contaminated sediment will be left behind; however, these elevation constraints are assumed to still allow the placement of a full RMC layer (i.e., average 9 inch thick sand layer). The concentration immediately following completion of construction was estimated to be 35 μ g/kg dw for total PCBs based on the dredging residuals methodology presented in Appendix B, Part 3A, of the FS.

Area 5

The fifth area includes 2.4 acres under the West Seattle Bridge and the bridge at the head of Slip 27 that have access restrictions (Figure 1). In these areas, removal is limited by geotechnical and structural considerations required to maintain stability of bridge columns. However, these areas are not limited in the amount of clean cover that could be placed following dredging. In addition, these areas experience little to no sediment disturbance from propwash. The resulting post-construction concentration was estimated to be 10 µg/kg dw for total PCBs through limited removal and RMC placement.

Area 6

The sixth area includes 1.8 acres under the three low bridges in the Sill Reach (Figure 1). These areas are characterized by extreme access limitations and widespread debris. Divernssisted hydraulic dredging would be ineffective in these areas due to the presence of debris. Therefore, enhanced natural recovery (ENR) was assumed in these areas, with a post-construction concentration of 8 μ g/kg dw, as a result of some dredging residuals depositing from adjacent areas consistent with the conceptual site model of sediment transport in the EW.

This analysis demonstrated that it is not technically possible to achieve the natural background-based SCO for total PCBs. Considering all of these areas together, the site-wide SWAC immediately following construction was estimated to be 57 µg/kg dw for total PCBs, with an effective bioavailable concentration of 34 µg/kg. Note that this post-construction SWAC is the theoretical limit of technical possibility. As discussed above, this hypothetical SWAC assumes that construction would be completed uniformly across the site, at a single point in time (e.g., instantaneously), therefore, this analysis does not consider the sediment mixing and exchange or ongoing sediment deposition that would occur over the timeframe required to conduct this cleanup. Moreover, this hypothetical scenario would have a construction timeframe of more than 15 years, during which time sediments would be mixing due to vessel propwash. Accordingly, the above site-wide post-construction SWAC represents an idealized condition that cannot realistically be achieved during remedy implementation.

4.1.2 Maintenance in the Long Term

This section describes four considerations for whether it would be technically possible to maintain the natural background based SCOs for total PCBs and dioxin/furan in the long term, considering the lowest technically possible achievable concentration estimated in Section 4.1.1. The four considerations are as follows:

- 1. Predicted increase in the SWAC following sediment mixing and exchange between underpier and open water sediment
- 2. Predicted future average concentrations in particulate matter entering the EW
- 3. Measured concentrations present in surface sediment at remediated sites proximal to the EW
- 4. Measured surface sediment concentrations in Elliott Bay

The first line of evidence is the box model site wide SWAC predictions. Following construction, box model predictions of the site wide SWAC for each of the remediation alternatives except no action increase in the short-term (e.g., year 5 following construction) as a result of sediment mixing and exchange between open-water and underpier sediments (see FS Appendix J). The box model predicts that concentrations will then gradually reduce

toward the net incoming sediment concentrations over time, which are above natural background based cleanup levels and lowest technically possible achievable concentration for total PCBs and dioxins/furans (see next line of evidence).

The second line of evidence is the concentration of incoming sediments. Table 2 provides the estimated average sediment input concentrations for the EW based on incoming solids from both upstream (including Green River and LDW) and EW lateral inputs. These concentrations were calculated using a weighted average of chemical concentrations based on inputs entering the EW from the Green/Duwamish River, resuspended LDW bedded sediment, and lateral inputs from both the LDW and EW (see FS Table 5-5). Average input concentrations do not incorporate concentrations that may come from the EW bed, including the dredge residuals that will be present following construction, and sediments in unremediated areas. Average input concentrations were developed for the base case (best estimate), low bounding, and high bounding runs, adjusted to account for additional source control for lateral inputs (i.e., combined sewer overflow [CSO] and stormwater inputs) managed by source control programs (e.g., National Pollutant Discharge Elimination System [NPDES]). For total PCBs, the average input concentrations ranged from 8 to 85 µg/kg dw, and for dioxin/furans the average input concentrations ranged from 2 to 8 ng TEQ/kg dw. The base case (best estimates) values for both total PCBs (45 µg/kg dw) and dioxins/furans (6 ng TEQ/kg dw) are well above the SCO concentrations for total PCBs (3 µg/kg dw), and marginally above the SCO for dioxins/furans (5 ng TEQ/kg dw).

The third line of evidence is the post-remediation surface sediment concentrations of four cleanup sites in relatively close proximity to the EW, which were selected as representative of the post-remediation concentrations that could be expected to be achieved in the long term. Table 2 summarizes the most recent available post-remediation monitoring data for Pier 53–54, Lockheed Shipyard, Todd Shipyards, and Duwamish Diagonal, as well as the form of remediation (dredging, capping, or ENR) used at each site. The surface sediment data range from 5 to 10 years post-remediation and represent the surface sediment concentrations that can be expected following dredging, capping, or ENR, as well as the influence of ongoing sedimentation from diffuse urban inputs. Mean concentrations from the above four datasets suggest that post-remediation concentrations in the EW could range from approximately 32 to 133 μ g/kg dw for total PCBs, and be approximately 5 ng TEQ/kg dw for

dioxin/furans (data from Duwamish/Diagonal cap only), depending on the dataset considered. These concentrations exceed the natural background levels for total PCBs and dioxins/furans. The resultant ranges of concentrations from all four of the datasets suggest that it is not technically possible to maintain the SCO for total PCBs (3.5 µg/kg dw) and may or may not be possible to maintain the SCO for dioxins/furans (5 ng TEQ/kg dw) in the long term in this region of Puget Sound, including the EW.

The fourth line of evidence is surface sediment concentrations from Elliott Bay. These data represent ambient concentrations in Elliott Bay, which provides an estimate of deposited sediment from diffuse urban inputs that may influence expected long-term concentrations. As shown in Table 2, inner Elliott Bay⁴-samples had a mean total PCBs concentration of 153 µg/kg dw (2007 data), and the mean dioxins/furans concentration was 20 ng TEQ/kg dw (2007 data). Concentrations are higher when 90th percentile values are considered (274 µg/kg dw for total PCBs based on 2007 data). In outer Elliott Bay, mean total PCBs concentrations range from 28 µg/kg dw (2007 data) to 32 µg/kg dw (1991 to 2004 data), and the mean dioxins/furans concentration was 2 ng TEQ/kg dw (2007 data) (see Table 2). Concentrations are higher when 90th percentile values are considered (e.g., 53 µg/kg dw for total PCBs based on 2007 data). Post remediation concentrations of total PCBs and dioxins/furans in sediment in the EW would be higher than these values because of its closer proximity to diffuse urban inputs, which are more represented by data from inner Elliott Bay.

In summary, all the lines of evidence to determine concentrations that can be achieved in the long term in the EW indicate that the SCO will not be achieved or maintained. For total PCBs, the average concentrations are well above the SCO of 3.5 µg/kg dw, and range of achievable concentrations for all lines of evidence is 9 to 153 µg/kg dw. For dioxins/furans, the average concentrations are well above the SCO of 5.0 ng TEQ/kg dw, and range of achievable concentrations for all lines of evidence is 1.7 to 20 ng TEQ/kg dw. Regional background concentrations, when determined, are expected to fall within this range.

⁴Inner Elliott Bay samples are generally defined as samples east of a line from Terminal 91 directly south to West Seattle. Outer Elliott Bay includes the samples west of the line. See the depiction in Appendix J, Figure J-3, of the LDW FS (AECOM 2012).

4.2 Net Adverse Environmental Impact

The second factor in determining an upward adjustment of the SCO based cleanup level is the determination of net adverse impact on the aquatic environment, which takes into account "the short—and long term positive effects on natural resources, habitat restoration, and habitat enhancement and the short—and long-term adverse impacts on natural resources and habitat caused by cleanup actions" (WAC 173-204-560(2)(a)(ii)(B)).

SMS cleanup levels for total PCBs and dioxin/furans that are not adjusted significantly upward from the SCO could only be met and reliably maintained with additional dredging over larger areas and at greater depths, and repeated capping and redredging of the same areas as concentrations rise due to diffuse source inputs over time. This approach would result in very large adverse impacts on the aquatic environment (natural resources and habitat) from construction without producing any countervailing long term environmental benefits from the additional cleanup measures (i.e., risk reduction). Repeated rounds of dredging and/or capping would result in major additional construction-related adverse impacts to the benthic community, due to disruption of the established biological active zone, and to fish tissue contaminant levels, due to releases of contaminated material during dredging, resulting in higher fish exposures. In addition, these adverse impacts would occur over a significantly longer period of time. Even with ongoing efforts of this type, evidence presented in Section 4.1 of this appendix suggests that the SCOs for total PCBs and dioxin/furans would still not be achieved. As such, the continued cleanup activities in an attempt to reach concentrations closer to the SCO would result in significant adverse impacts to the environment without commensurate benefits to the benthic community or reductions in tissue concentrations that would lower human health risks. Ultimately, the EW system will equilibrate to incoming sediment concentrations that are higher than the SCO and similar to concentrations resulting from less disruptive cleanup activities associated with higher cleanup levels (e.g., CSL).

In comparison, SMS cleanup levels based on the CSL for total PCBs and dioxin/furans (i.e., regional background, once established) would result in slightly smaller adverse impacts on the aquatic environment from construction because the cleanup technologies needed to meet the cleanup levels would be less intrusive to benthic communities in some areas (less dredging or capping), and the need for additional contingency actions would be greatly

reduced or eliminated. A cleanup level at or close to the regional background for total PCBs and dioxin/furans, once established, would reflect the concentrations of those contaminants in incoming sediment over the long term, thereby avoiding unnecessary adverse impacts on the aquatic environment from construction and ultimately resulting in similar or improved long-term environmental benefits from cleanup (i.e., risk-reduction). Therefore, sediment cleanup levels based on SCO will result in net adverse impacts, which would not occur with cleanup levels that are adjusted upward to the CSL based on regional background.

4.3 Summary and Conclusion

If, after evaluating long-term monitoring trends, EPA doesn't expect the remedy to comply with the natural background-based PRGs, cGompliance with the SMS will requirecould be accomplished through the adjustment of cleanup levels upward from the SCO to the CSL for total PCBs and dioxins/furans. This adjustment willmay occur in the future whenif the CSL (i.e., regional background) is established for these contaminants.

For FS purposes, a hypothetical maximum removal scenario was analyzed to approximate lowest technically possible concentrations for total PCBs that could be achieved following construction. This analysis indicated that approximately 57 µg/kg dw could be achieved (34 µg/kg when making adjustments for bioavailability) when considering limitations to remediating near structures to achieve very low total PCBs concentrations.

Multiple lines of evidence were analyzed to approximate values that could be achieved in the long term. For total PCBs, the average concentrations are well above the SCO of 3.5 μ g/kg dw, and range of achievable concentrations for all lines of evidence is 9 to 153 μ g/kg dw. For dioxins/furans, the average concentrations are above the SCO of 5.0 ng TEQ/kg dw, and range of achievable concentrations for all lines of evidence is 1.7 to 20 ng TEQ/kg dw. As discussed in Section 4, the cleanup level may not be adjusted above the CSL (i.e., regional background values, once established).

Finally, the net adverse environmental impact for setting the cleanup level at the SCO was qualitatively discussed, indicating that the cleanup levels need to be adjusted upward to the CSL, when established, to avoid environmental disturbances that results in no environmental benefit.

5 SEDIMENT RECOVERY ZONE

Under SMS, a restoration timeframe of longer than 10 years (i.e., cleanup levels not achieved within 10 years) would result in the designation of an SRZ (WAC 173 204 570(5)(b)). SMS define the SRZ as the following:

"Sediment recovery zone" means an area authorized by the department within a site or sediment cleanup unit where the department has determined the cleanup action cannot achieve the applicable sediment cleanup standards within ten years after completion of construction of the active components of the cleanup action.

The SRZ is used to track a cleanup area that remains above cleanup levels and perform additional cleanup or source control actions as necessary. The requirements of the SRZ are listed in WAC 173-204-590(2), are very similar to the CERGLA requirements of the selected remedy, and would be substantively met through CERGLA components of the remedy (e.g., the long-term monitoring and 5-year review framework, and the alternative analysis, comparison, and selection process).

The key components of the SRZ approach, if used, are the following:

- The SRZ would be designated side wide for relevant human health risk drivers 10
 years following construction.
- The Harbor Island Superfund Site 5- year reviews and site-wide monitoring program
 would provide the periodic review process for adjusting, eliminating, or renewing the
 SRZ consistent with SMS.
- The SRZ would be used in concert with active cleanup and source control measures for the selected alternative, and would not replace cleanup actions. The contaminant concentrations within the SRZ will be as close as practicable to the cleanup level, based on the CERCLA comparison of alternatives under the nine criteria in the FS.

For the EW, post construction site wide monitoring data would be used to evaluate progress toward meeting the cleanup levels. This information could also be used to support establishment or evaluation of regional background concentrations and potential modification of the SRZ and closure of the site.

If monitoring data shows cleanup standards cannot be met, the following options are available for Ecology to consider:

- 1. If noncompliance is due to PLP sources not being controlled, additional source control may be necessary.
- 2. If noncompliance is due to contribution from other sources that are not under the responsibility or authority of the PLP, closure of the SRZ may be appropriate or adjustment of the cleanup level may be appropriate. For example:
 - a. Ecology may consider whether the cleanup level should be adjusted upwards according to the process detailed in Chapter 7, Section 7.2.3. An example of when this may be appropriate is where the cleanup level was established below regional background, but Ecology has since established or approved regional background for the geographic area where the site is located. In this case, Ecology may determine that regional background represents the concentration in sediment that is technically possible to maintain, due to ongoing sources that are not under the authority or responsibility of the PLP. Therefore, Ecology could allow upwards adjustment of the sediment cleanup level to the CSL if regional background has been established as the CSL.
 - b. If the cleanup levels are based on background (regional or natural), Ecology will consider whether background concentrations have increased and the cleanup level should be adjusted upwards.

(Ecology 2017, Section 14.2.6)

65 CONCLUSIONS

The PRGs in the EW FS have been developed <u>under CERCLA</u> to be consistent with SMS (WAC 173-204-560). The selected alternative will meet the SMS ARAR over time by achieving the SCO, or by achieving the cleanup level after the establishment of a CSL and upward adjustment of the -cleanup level, or by establishment of a TI waiver. If cleanup levels are not achieved within 10 years following construction, then the substantive requirements of an SRZ will additional time for achieving the cleanup levels may be met through the CERCLA 5 year review processwarranted under CERCLA if determined to be appropriate by EPA.

Because it is not known whether, or to what extent, the SMS ARARs for various COCs will be achieved in the long term, or the timing of a potential regional background evaluation, a TI waiver or upward adjustment of the cleanup levels under the SMS compliance mechanism is not selectedjustifiable at this time. The method used to comply with the SMS ARAR will depend primarily on the timing of regional background evaluations for the EW and measured site performance following construction.

EPA may also issue a TI waiver at some point in the future if EPA determines that SMS-based cleanup levels cannot be practicably achieved within the EW based on long-term monitoring data and trends. This would be conducted either as part of a ROD Amendment or an ESD.

7 REFERENCES

- AECOM, 2012. Feasibility Study, Lower Duwamish Waterway, Seattle, Washington. Final Report. Prepared for Lower Duwamish Waterway Group. October 2012.
- Ecology (Washington State Department of Ecology), 2008. Dioxins, Furans, and other Contaminants in Surface Sediment and English Sole Collected from Greater Elliott Bay (Seattle), Publication No. 08-03-017. June 2008.
- Ecology, 2017. Sediment Cleanup User's Manual II. Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAG.

 Publication No. 12-09-057. April 2017.
- Floyd|Snider, 2010. Subject: Requested 5-Year Review Package Todd Shipyards Sediment
 Operable Unit. Project Number: Todd NPL. Letter to Lynda Priddy,
 U.S. Environmental Protection Agency, Region 10. August 31, 2010.
- King County, 2010. Pier 53-55 Sediment Cap and Enhanced Natural Recovery Area Remediation Project, 2002 Data and Final Report, King County. June 2010.
- Tetra Tech, 2012. Lockheed Shipyard No. 1, Sediments Operable Unit (LSSOU) Harbor
 Island, Scattle, Washington, 2012 Operations, Monitoring and Maintenance Report.
 Prepared for Lockheed Martin Corporations. Prepared by Tetra Tech. September 2012.

TABLES

Figures

Formatted: Cover Text